

General Training On Methodologies For Geological Disposal in North America

Performance Standards for Geologic Disposal: A Regulator's Perspective

Betsy Forinash
U.S. EPA, Radiation Protection Division
Presentation to IAEA Training
October 18, 2004

Performance Standards for Geologic Disposal: A Regulator's Perspective

- Process for establishing regulations Background and goals
 - The steps in the process
- Major elements in performance standards
- A case study: EPA's standards for geologic disposal of radioactive waste (40 CFR 191)

General Training On Methodologies For Geological Disposal in North America
IAEA Network of Centers of Excellence

Regulatory Process: Background

- The development of U.S. standards is defined by Legislative requirements
 Policies of the regulatory agency
- Goals

Public information and involvement Openness, no undue influence Clear explanation and basis for regulations

 Failure to follow the process can lead to Loss of public confidence Implementation problems Legal vulnerability

No standard time frame for rule development

Regulatory Process: How It Works

- Information gathering
- Proposed rule
- Public input, refine approach
- Final rule
- At each stage, there are different goals and requirements.

General Training On Methodologies For Geological Disposal in North America
IAEA Network of Centers of Excellence

Regulatory Process - Step 1: Information Gathering

- Serves as basis to develop technical criteria and regulatory approach
- Flexibility in methods is allowed and helpful
- Possible sources of information include

Internal research

Consultation with stakeholders

International cooperation and consultation

Independent reviews (U.S. National Academy of Sciences)

Announcement of intent to develop rule (optional)

logies For Geological Disposal in North America
IAEA Network of Centers of Excellence

Regulatory Process - Step 2: Proposed Rule

- "Proposed rule" explains reasoning
- Written notice required, other informal mechanisms available (mailing lists, etc.)
- Must explain reasoning

Technical and policy considerations

Multiple options may be discussed

Supporting documents are made available Specific issues may be highlighted for input

Regulatory Process - Step 3: Public Input

• Equal information, access is crucial

Public hearings and meetings may be targeted (but not restricted) to certain stakeholders

Written comments can be submitted

Interaction with stakeholders in private is limited

- Internal consideration of input is crucial in developing, defending final rule
- Additional information gathering may occur (further internal research, consultation)

General Training On Methodologies For Geological Disposal in North America

IAEA Network of Centers of Excellence

Regulatory Process - Step 4: Final Rule

- Written notice required (other methods optional)
- Must provide final standards and explanation

Discussion of major comments, how considered Rationale for final standards

Must be "logical outgrowth" of proposal, no completely new issues

Effective date and other legal aspects

Guidance, expectations for implementation can be provided

 Administrative reviews are also required to ensure consistency within and across Agencies

General Training On Methodologies For Geological Disposal in North America

IAEA Network of Centers of Excellence

Major Elements in Safety Standards for Geologic Disposal

- Baseline Conditions: source term, site conditions
- Time frame of analysis
- Events/scenarios to be considered
 Exposure pathways of interest
 Exclusion of "unlikely" events, combination of events
 Human intrusion
- Receptor location and characteristics
 Receptor location or "compliance boundary"
 Individual or group receptors
 Assumptions on ultimate land use and accessibility
 Activity, rates of consumption
 Non-human or environmental receptors

Elements in Safety Standards for Geologic Disposal

• Treatment of parameter uncertainty

Average

Worst case

Probabilistic analysis

- Form of results: risk, dose, concentrationRequired level of confidence
- Other

Quality assurance on data

Model validation

Qualitative measures, sub-system performance
 Multiple compliance measures may apply with different time frames, scenarios, etc.

General Training On Methodologies For Geological Disposal in North America

IAEA Network of Centers of Excellence

Challenges for Regulating Geologic Disposal

- Source term may be uncertain or non-homogeneous Radioactive decay
- Very long time frames -- significant implications for defining receptors and bounding uncertainty

Uncertainty in land use, institutional controls

Human intrusion scenarios

Evolution of natural processes

Definition of unlikely events

Demographic or behavioral patterns

- Challenges to verifying results
- Much different approach than regulation of other hazardous materials

eral Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence

Case Study: EPA's Generic Standards for High-Level and Transuranic Waste (40 CFR 191)

· Apply to all disposal systems for high-level and transuranic waste

Applies to WIPP (with EPA as implementing agency) Yucca Mountain exempt (site-specific standards)

- · Limit individual annual doses from operations
- For disposal phase, three primary compliance measures

Release limits (cumulative curies) Individual dose limits (annual)

Ground water concentration limits

Case Study: 40 CFR 191 Disposal Standards

- Regulatory time frame is 10,000 years
- All release and exposure pathways are considered
- Scenarios

"Significant" events included; "unlikely" events excluded Human intrusion assessed for release limits only

Receptor

Surrounding geologic media part of containment system ("controlled area")

Compliance measured at limits of institutional control Special protections for ground water

General Training On Methodologies For Geological Disposal in North America

IAEA Network of Centers of Excellence

Case Study: 40 CFR 191 Disposal Standards

· Treatment of uncertainty

Probabilistic performance assessment
"Reasonable expectation" of compliance: "Proof of the future performance of a disposal system is not to be had in the ordinary sense of the word."

Compliance limits
 Two compliance points for release limits

Limits proportional to inventory of nuclides
Small chance (0.1) of exceeding limits (normalized)
Very small chance of greatly exceeding limits (0.001, 10 times normalized limits)
Includes consideration of human intrusion

Individual protection: 15 mrem/yr (undisturbed)

Ground water protection: equivalent to present-day drinking water limits (undisturbed)

eral Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence

Case Study: - 40 CFR 191 Disposal Standards

• Assurance Requirements

Active institutional controls (no credit after 100 years)

Monitoring (without disruption of disposal system)
Passive institutional controls and markers

Engineered barriers

Avoidance of resource-rich areas

Retrieval of wastes not precluded

Significant details are left to licensing agency
 Definition of "unlikely" and "significant" events
 Selection of statistical measures and confidence

Key assumptions on scenarios, receptor characteristics, social and demographic changes

Quality assurance, peer review, parameter estimation

Key Lessons

- Must pay attention to process and end result
 Public confidence depends on both
 Legal challenges (in U.S.) can be based on either aspect
 National and international views evolve
 Keep in mind that the framework as a whole must be protective and credible
 Balance two competing demands
 Make goals and compliance measures as straightforward and understandable as possible...
 While leaving adequate flexibility to accommodate evolving priorities and unanticipated issues

 More detailed licensing criteria based on the safety standards are necessary for effective implementation
 Allows greater flexibility in underlying standards (as discussed above)
 Later decisions are not less important—but more detailed and site-specific
 Continuing dialogue and evaluation of regulations is essential
 Open, public processes continue to be important or confidence can erode.

